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Abstract

A general idea—message passing with messages that have some nontrivial Markov
structure—is outlined. This general idea is worked out for one particular applica-
tion, viz., the synchronization (state estimation) of “noisy” linear-feedback shift
register sequences. For this application, the flexible tradeoff between performance
and complexity is demonstrated by simulation results. Generalizations to low-
complexity approximations of the BCJR algorithm are outlined.

1 Introduction

This paper is both about a general idea and about a specific application. The general
idea is to consider message passing algorithms with messages that have some internal
Markov structure and thus are themselves nontrivial graphs; the specific application
considered in this paper is the synchronization of “noisy” LFSR (linear-feedback shift
register) sequences, as will be described below.

The general idea is illustrated in Fig. 1. These figures are Forney-style factor graphs
(FFGs) [1], [2], [3], where boxes correspond to factors and edges correspond to vari-
ables. Fig. 1a shows a general probability mass function or density (pdf) p(x, y, z) of
three variables X, Y , and Z; the box in the figure may have an arbitrary internal struc-
ture. According to the standard sum-product (belief propagation) algorithm [4], [3],
the messages out of that box are the marginals p(x), p(y), and p(z); this amounts to
approximating p(x, y, z) by p(x)p(y)p(z), which is shown in Fig. 1b. However, a better
approximation of p(x, y, z) is p(x)p(y|x)p(z|y), which is shown in Fig. 1c. The general
idea of this paper is to consider message passing with messages (summaries) that have
some Markov structure between the full joint pdf p(x, y, z) and the product of marginals
p(x)p(y)p(z).

Related earlier work includes “generalized belief propagation” [5], [6], [7] by Yedidia
et al. as well as the more recent “survey propagation” [8]; the relation of our approach
to this earlier work remains to be clarified.

The specific application considered in this paper is the synchronization of noisy LFSR
sequences, as will be described in Section 2. For this example, we derive explicit (non-
iterative) message passing algorithms (in Section 3) and give some preliminary simulation
results (in Section 4). A special feature of this example is that forward-only message
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Figure 1: Models/summaries with Markov structure.
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Figure 2: Linear-feedback shift register (LFSR) sequence observed via a noisy channel.

passing—i.e., (nonlinear) filtering—is optimal on the full trellis and attractive for low-
complexity algorithms.

Some remarks on other applications are offered in Section 5. In particular, it seems
straightforward to develop low-complexity approximations to the BCJR algorithm [9].

2 Synchronization of Noisy LFSR Sequences

As mentioned, we will focus on a specific problem, which was earlier considered in [10]. In
this section, we state the problem and summarize the results of [10]; the new algorithms
will be described in Section 3.

For fixed integers ` and m satisfying 1 ≤ ` < m, let

X
4
= X−m+1, . . . , X−1, X0, X1, X2, . . . (1)

be a sequence of variables Xk that take values in {0, 1}. Let “⊕” denote addition modulo 2
and assume that

Xk = Xk−` ⊕Xk−m (2)

holds for all k > 0. For k ≥ 0, the m-tuple [X]k
4
= (Xk, Xk−1, . . . , Xk−m+1) will be called

the state of X at time k. Note that the whole sequence X is fully determined by its state
[X]k at any time k ≥ 0.

The recursion (2) is illustrated in Fig. 2 for ` = 1 and m = 4. The boxes labelled
“D” are unit-delay cells; the contents of these boxes determine the state.

The sequence X1, X2, . . . is observed via a memoryless channel with transition proba-
bilities p(yk|xk). From the received sequence Y1, Y2, . . . , Yn, we wish to estimate the state



[X]n of the transmitted sequence. In the numerical examples, we will assume that the
channel is defined by

Yk = X̃k + Zk (3)

with

X̃k
4
=

{
1, if Xk = 0

−1, if Xk = 1
(4)

(i.e., binary antipodal signaling) and where Z1, Z2, . . . are independent zero-mean Gaus-
sian random variables with variance σ2.

As stated, we wish to estimate [X]n from Y1, Y2, . . . , Yn. The computation of the
maximum-likelihood (ML) estimate is straightforward and well known [11]; however, the
complexity of this computation is proportional to n2m, which makes it impractical unless
m is very small. In [10], a suboptimal algorithm was proposed, the complexity of which
is independent of m. The algorithms proposed in the present paper include both the ML
estimate and the algorithm of [10] as special cases.

An FFG (Forney-style factor graph) of our system model is shown in Fig. 3. As in
[10], we will restrict ourselves to non-iterative forward-only (i.e., left-to-right) message
passing; all backward (right-to-left) messages may be thought of as carrying a neutral
constant factor 1. The forward messages will be denoted by expressions such as µk(xk)
or µk−1(xk−1, . . . , xk−4), where the subscript denotes time; all such messages will denote
probability mass functions of the indicated variables. As it turns out, it will be advan-
tageous to carry out the update of the messages (from µk−1 to µk) in two steps, with
intermediate messages µ̃k as indicated in Fig. 3. The first step (resulting in µ̃k) is the
prediction from the previous state; the second step incorporates the observation Yk.

In this setup, the low-complexity algorithm of [10] is obtained by straightforward
application of the sum-product algorithm [4], [1], [3] with (forward-only) messages as
indicated in Fig. 4 (left). In particular, we have

µ̃k(xk) =
∑
xk−1

. . .
∑
xk−m

δ(xk ⊕ xk−` ⊕ xk−m) · µk−1(xk−1) · · ·µk−1(xk−m) (5)

=
∑
xk−`

∑
xk−m

δ(xk ⊕ xk−` ⊕ xk−m) · µk−1(xk−`) · µk−1(xk−m) (6)

where “δ(.)” is the Kronecker delta, and for n = 1, . . . ,m− 1, we have

µ̃k(xk−n) = µk−1(xk−n). (7)

Note that the parity check (i.e., the factor δ(xk ⊕ xk−` ⊕ xk−m)) does not appear in (7)
since the neutral backwards message along Xk effectively removes the parity check. In
the second step, we have

µk(xk) ∝ p(yk|xk) · µ̃k(xk), (8)

where “∝” denotes equality up to a scale factor, and

µk(xk−n) = µ̃k(xk−n) (9)

for n = 1, . . . ,m − 1. As pointed out in [10], these computations may be viewed as
filtering the received sequence Y by a “soft” version of the LFSR that generates the
sequence X.

The maximum likelihood estimate may be obtained by the forward recursion of the
BCJR algorithm; see [10] for details. Within the setup of this paper, this algorithm
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Figure 3: FFG corresponding to Fig. 2 (with m = 4 and ` = 1).
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Figure 4: Forward-only message passing for marginals (left) and for full joint pdf (right).
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Figure 5: Messages as first-order Markov chain (left) and second-order Markov chain
(right).



amounts to the (forward-only) sum-product algorithm with messages as indicated in
Fig. 4 (right):

µ̃k(xk, . . . , xk−m+1) =
∑
xk−m

δ(xk ⊕ xk−` ⊕ xk−m) · µk−1(xk−1, . . . , xk−m) (10)

and
µk(xk, . . . , xk−m+1) ∝ p(yk|xk) · µ̃k(xk, . . . , xk−m+1). (11)

From these messages, an obvious state estimate [X̂]k = (X̂k, . . . , X̂k−m+1) is

[X̂]k = argmax(µk(xk, . . . , xk−m+1)). (12)

However, in our simulations (also for the algorithms of Section 3), we used the simpler
estimate

[X̂]k =
(
argmax(µk(xk)), . . . , argmax(µk(xk−m+1))

)
, (13)

the componentwise hard-decision estimate from the marginals; from our limited experi-
ence, it seems that the difference in performance between these estimates is insignificant.

3 Intermediate-Complexity Algorithms

Algorithms with a complexity between the two extremes of Section 2 may be obtained
by imposing a nontrival Markov chain structure on the messages. We will work this out
in detail for messages that are first-order Markov chains as illustrated in Fig. 5 (left);
the generalization to higher-order Markov chains (Fig. 5 (right)) is straightforward. We
thus assume that the total message µk(xk, . . . , xk−m+1) factors as

µk(xk, . . . , xk−m+1) =
µk(xk, xk−1) · µk(xk−1, xk−2) · · ·µk(xk−m+2, xk−m+1)

µk(xk−1) · µk(xk−2) · · ·µk(xk−m+2)
(14)

= µk(xk) · µk(xk−1|xk) · · ·µk(xk−m+1|xk−m+2), (15)

and likewise for µ̃k. We will work with the form (14), although the form (15) (or the
reversed chain) may be more convenient for practical calculations. Note that marginals
such as µk(xk−1) may be obtained either from µk(xk, xk−1) or from µk(xk−1, xk−2).

For the first step, from µk−1 to µ̃k, we obtain the prediction message µ̃k(xk, xk−1) as

µ̃k(xk, xk−1) =
∑
xk−2

. . .
∑
xk−m

δ(xk ⊕ xk−` ⊕ xk−m) · µk−1(xk−1, . . . , xk−m) (16)

=
∑
xk−2

µk−1(xk−1, xk−2)

µk−1(xk−2)

∑
xk−3

µk−1(xk−2, xk−3)

µk−1(xk−3)
· · ·

∑
xk−m

µk−1(xk−m+1, xk−m) · δ(xk ⊕ xk−` ⊕ xk−m), (17)

which amounts to a bottom-up sum-product sweep through the Markov chain µk−1. The
remaining intermediate messages are obtained as

µ̃k(xk−n, xk−n−1) = µk−1(xk−n, xk−n−1) (18)

for n = 1, . . . ,m− 2.



For the second step, from µ̃k to µk, we obtain first

µk(xk, xk−1) ∝ p(yk|xk)
∑
xk−2

. . .
∑

xk−m+1

µ̃k(xk, . . . , xk−m+1) (19)

= p(yk|xk) ·
µ̃k(xk, xk−1)

µ̃k(xk−1)

∑
xk−2

. . .
∑

xk−m+1

µ̃k(xk−1, . . . , xk−m+1) (20)

= p(yk|xk) · µ̃k(xk, xk−1), (21)

and then recursively

µk(xk−1, xk−2) ∝
∑
xk

∑
xk−3

. . .
∑

xk−m+1

p(yk|xk) · µ̃k(xk, . . . , xk−m+1) (22)

=
∑
xk

p(yk|xk)
µ̃k(xk, xk−1) · µ̃k(xk−1, xk−2)

µ̃k(xk−1) · µ̃k(xk−2)∑
xk−3

. . .
∑

xk−m+1

µ̃k(xk−2, . . . , xk−m+1) (23)

=
∑
xk

p(yk|xk)
µ̃k(xk, xk−1) · µ̃k(xk−1, xk−2)

µ̃k(xk−1)
(24)

∝ µ̃k(xk−1, xk−2)

µ̃k(xk−1)

∑
xk

µk(xk, xk−1) (25)

and

µk(xk−2, xk−3) ∝
∑
xk

∑
xk−1

∑
xk−4

. . .
∑

xk−m+1

p(yk|xk) · µ̃k(xk, . . . , xk−m+1) (26)

=
∑
xk

∑
xk−1

p(yk|xk)
µ̃k(xk, xk−1) · µ̃k(xk−1, xk−2) · µ̃k(xk−2, xk−3)

µ̃k(xk−1) · µ̃k(xk−2) · µ̃k(xk−3)∑
xk−4

. . .
∑

xk−m+1

µ̃k(xk−3, . . . , xk−m+1) (27)

=
∑
xk

∑
xk−1

p(yk|xk)
µ̃k(xk, xk−1) · µ̃k(xk−1, xk−2) · µ̃k(xk−2, xk−3)

µ̃k(xk−1) · µ̃k(xk−2)
(28)

=
µ̃k(xk−2, xk−3)

µ̃k(xk−2)

∑
xk−1

µ̃k(xk−1, xk−2)

µ̃k(xk−1)

∑
xk

p(yk|xk) · µ̃k(xk, xk−1) (29)

∝ µ̃k(xk−2, xk−3)

µ̃k(xk−2)

∑
xk−1

µk(xk−1, xk−2), (30)

etc., which amounts to a top-down sum-product sweep through the Markov chain µ̃k.

4 Simulation Results

Some first simulation results are shown in Figures 6–11. All these figures show plots of
the probability of synchronization

Psynch(k)
4
= P

(
[X̂]k = [X]k

)
, (31)
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Figure 6: m = 4; Psynch vs. k at 0 dB.
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Figure 7: m = 15; Psynch vs. k at 0 dB.
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Figure 8: m = 4; 1 − Psynch vs. k at
0 dB.
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Figure 9: m = 15; 1 − Psynch vs. k at
0 dB.
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Figure 10: m = 4; 1−Psynch vs. SNR at
k = 30.
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Figure 11: m = 15; 1 − Psynch vs. SNR
at k = 100.



either versus the time index k or versus the signal-to-noise ratio SNRdB
4
= −10 · log10 σ2,

where σ2 is the noise variance.
The figures in the left column are for a small LFSR with m = 4 and ` = 1; the figures

in the right column are for a bigger LFSR with m = 15 and ` = 1. The solid curves in
all figures are the maximum-likelihood estimate, which corresponds to propagating the
full joint pdf as described in Section 2. The dashed curves result from the algorithm
of [10], which is equivalent to propagating only the marginals as described in Section 2.
The dot-dashed curves (between the other curves) result from the algorithm of Section 3,
where the messages are first-order Markov chains.

As is obvious from these plots, the algorithm proposed in Section 3 provides a signif-
icant improvement over the algorithm of [10] even for first-order Markov chains. Using
higher-order Markov chains should provide further substantial improvements.

5 Concluding Remarks

We have outlined the general idea of working with messages that have some nontrivial
Markov structure. We have worked out this idea for one application, the synchronization
of noisy LFSR sequences, for which we have given some simulation results.

The general idea of this paper seems to be related to “generalized belief propagation”
by Yedidia et al. [5], [6], [7] as well as to “survey propagation” by Braunstein, Mézard, and
Zecchina [8]. A closely related idea is the approximation of general covariance matrices
in Kalman filtering and recursive least squares by band-diagonal matrices.

It seems straightforward to generalize the algorithms of Section 3 so that they can
serve as low-complexity approximations both to the forward recursion and to the back-
ward recursion of the BCJR algorithm for general (large) trellises. For example, it appears
promising to apply such algorithms to (the trellis of) intersymbol-interference channels;
it will also be interesting to see how well such algorithms do when applied to (forward-
backward) decoding of convolutional codes.
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